3 research outputs found

    Performance Evaluation of Energy Efficient Optimized Routing Protocol for WBANs Using PSO Protocol

    Get PDF
    A Wireless Body Area Network (WBAN) is a network that may be worn on the human body or implanted in the human body to transmit data, audio, and video in real-time to assess how vital organs are performing. A WBAN may be either an inter-WBAN or an intra-WBAN network. Intra-WBAN communication occurs when the various body sensors can share information. This is known as inter-WBAN communication, which occurs when two or more WBANs can exchange data with one another. One difficulty involves getting data traffic from wireless sensor nodes to the gateway with as little wasted energy, dropped packets, and downtime as possible. In this paper, the WBAN protocols have been compared with WBAN under Particle Swarm Optimization (PSO), and the performance of various parameters has been analysed for different simulation areas. The WBAN under the PSO protocol reduces the energy consumption by 43.2% against the SIMPLE protocoldue to the effective selection of forwarding nodes based on PSO optimization. In addition to that the experimental WBAN testbed is conducted in indoor environment to study the performance of the routing metrics towards energy and packet reception.

    On Minimizing TCP Traffic Congestion in Vehicular Internet of Things (VIoT)

    No full text
    The performance of end-to-end wireless link congestion control algorithm in the vehicular internet of things network is plagued by the inherent limitations of spurious rate control initiation, slow convergence time, and fairness disparity. In this article, the delay assisted rate tuning (DART) approach is proposed for the vehicular network that implements two algorithms, utilization assisted reduction (UAR) and super linear convergence (SLC), to overcome the transmission control protocol (TCP) limitations. The UAR algorithm is responsible for initiating the proportionate rate control process based on the bottleneck prediction parameter, thereby regulating the needless rate control during non-congested losses. In the congestion recovery mode, the SLC algorithm executes a dynamic rate update mechanism that enhances the flow rate and minimizes bandwidth sharing disparity among TCP flows. An analytical model was developed to study the DART convergence rate and fairness performance against the existing algorithm. The vehicular simulation outcome also confirms significant enhancement in average transmission rate, average message latency, and average bandwidth sharing performances of the DART algorithms against the RFC 6582, TCP-LoRaD, and CERL + congestion avoidance algorithms under varying traffic flows and node movement scenarios
    corecore